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Abstract

Many astrophysical and laboratory plasmas possess Maxwell-Boltzmann (MB) electron energy

distributions (EEDs). Interpreting or predicting the properties of these plasmas requires accu-

rate knowledge of atomic processes such as radiative lifetimes, electron impact excitation and

de-excitation, electron impact ionization, radiative recombination, dielectronic recombination, and

charge transfer for thousands of levels or more. Plasma models cannot include all of the needed

levels and atomic data. Hence approximations need to be made to make the models tractable.

Here we report on an “analog” technique we have developed for simulating a Maxwellian EED

using an electron beam ion trap and review some recent results using this method.

A subset of the atomic data needed for modeling Maxwellian plasmas relates to calculating the

ionization balance. Accurate fractional abundance calculations for the different ionization stages

of the various elements in the plasma are needed to reliably interpret or predict the properties of

the gas. However, much of the atomic data needed for these calculations have not been generated

using modern theoretical methods and are often highly suspect. Here we will also review our recent

updating of the recommended atomic data for “digital” computer simulations of MB plasmas in

collisional ionization equilibrium (CIE), describe the changes relative to previously recommended

CIE calculations, and discuss what further recombination and ionization data are needed to improve

this latest set of recommended CIE calculations.

PACS numbers: 34.70.+e,34.80.Dp, 34.80.Kw, 34,80,Lx, 52.50.-j, 52.20.Fs, 52.20.Hv, 52.25.Jm, 52,72.+v,

52.75.-d, 95.30.Dr, 95.30.Ky, 98.38.Bn, 98.58.Bz

∗Electronic address: savin@astro.columbia.edu
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I. MAXWELL-BOLTZMANN (MB) PLASMAS

Plasmas with a Maxwell-Boltzmann (MB) electron energy distribution (EED) are ubiq-

uitous. In the cosmos they are observed in the sun and other stars, supernova remnants,

galaxies, and the intercluster medium of clusters of galaxies. In the laboratory MB plasmas

are found in fusion devices, Z-pinches, laser produced plasmas, and many other sources.

Interpreting or predicting the properties of MB plasmas is challenging. Atomic data are

needed for thousands upon thousands of processes. Experiments can provide only a fraction

of the needed data. Theory provides the bulk of the data, but approximations need to be

made to keep the calculations tractable. Also, plasma models cannot include all the needed

data without becoming computationally prohibitive.

One solution to this problem of understanding MB plasmas is to effectively build an

analog computer in the laboratory. This can be done by creating an MB plasma under

controlled condition to benchmark plasma models. This tests everything at once, both the

plasma model and the underlying atomic data.

Here we report on work which we have carried out over the last decade to improve our

understanding of MB plasmas. In Sec. II we describe a method we have developed to use

the nearly monoenergetic electron beam in an electron beam ion trap (EBIT) to simulate

an MB plasma. This technique was first implemented on the EBIT-II electron beam ion

trap at Lawrence Livermore National Laboratory [1] and has recently been adapted to the

Livermore EBIT-I device. Our initial tests of the fidelity of the MB simulations are described

in Sec. III. Further discussion of our EBIT MB “analog” simulation work is given in Ref. [2].

An important property of steady-state MB plasmas is the collisional ionization equilib-

rium (CIE) reached in the plasma. In Sec. IV we discuss previous work which has been

carried out to calculate fractional ion abundances for astrophysical MB plasmas in CIE. MB

studies at the Livermore EBITs have recently been expanded to investigate CIE as noted

in Sec. V. Our recent improvements to CIE calculations and some results are presented in

Sec. VI. We conclude this paper with discussion of the future atomic data needs for im-

proving our understanding of MB plasmas in CIE. Additional discussion of these “digital”

simulations of MB plasmas in CIE are given in Ref. [3].
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II. SIMULATING MB PLASMAS IN AN ELECTRON BEAM ION TRAP (EBIT)

A. Simulating an MB energy distribution

The key to simulating a MB plasma using the nearly monoenergetic beam in an EBIT is

to sweep the electron beam energy E in time so that

dτ

τo

= P (E, Te)dE (1)

where τo is the time length of sweep period, τ is the time in this period, and P (E, Te) is the

MB probability at an electron temperature Te of finding an electron in the energy range E

to E + dE. Here we have implicitly assumed that the electron density ne is kept constant.

The MB probability is given by

P (E, Te)dE =
2E1/2

π1/2(kBTe)3/2
exp

( −E

kBTe

)
dE (2)

where kB is the Boltzmann constant. As is described in Ref. [2], solving for τ yields

τ(E) = τo

[
erf(x)− 2xe−x2

√
π

]
, (3)

where erf(x) is the error function, x = (E/kBTe)
1/2, and the quantity in the square brack-

ets ranges between 0 and 1. The electron energy sweep pattern E(τ) may be calculated

numerically using Eq. 3.

B. Maintaining a constant-density electron beam

The electron density is kept constant as E is swept for a number of reasons. This keeps

space charge and trapping conditions largely unchanged during the sweeping. It also helps to

maintain a constant electron-ion overlap versus beam energy. This last point is important as

it helps to ensure all electron-ion collision processes go forward at the correct plasma rates.

The current from a Pierce electron gun, such as is used in the Lawrence EBITs, is given

by [4]

Ie = pV 3/2
a , (4)

where p is the perveance in units of amperes volts−3/2 and Va is anode voltage in volts. For

a beam with a shape and size constant with E, we have

ne ∝ Ie

ve
∝ V 3/2

a

E1/2
. (5)
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where ve is the electron beam velocity at energy E. To keep ne constant as a function of

E(τ), Va is swept so that

Va(τ) = (Va)r

[
E(τ)

Er

]1/3

, (6)

where (Va)r is the anode voltage at an arbitrary reference energy Er.

C. Technical limitations

Technical limitations constrain the implementation of the MB simulation in an EBIT. The

most obvious of these are the minimum and maximum energies, Emin and Emax respectively,

between which the beam energy can be swept. For the Livermore EBITs, typically Emin
>∼

0.2 keV. Although measurements can be performed with lower beam energies [5], the electron

beam is poorly behaved for these lower energies and does not lend itself to automated control

with rapidly varying conditions. This is not expected to be a significant problem for studying

X-ray emitting plasmas as most collision processes of interest occur for E > 0.2 keV.

Values of Emax are typically kept to ≤ (5− 6)kBTe. This is due to capacitances limiting

dE/dt and dVa/dt to ≤ 30 V/µs in the Livermore EBIT machines. As a result, the highest
energy electrons in the MB distribution are not sampled. These constitute typically ≤ 2%

of the total EED.

Due to the Emin and Emax limitation, we do not sweep over the entire period τo. The

actual sweep period is given by to = τ(Emax)− τ(Emin). The specific time versus E in the

applied sweep pattern E(t) is given by t(E) = τ(E)− τ(Emin).

To avoid problems of trying to sweep faster than the slew rate of the EBIT electrical

system, we sweep from Emin to Emax and then back down to Emin using the same pattern as

the upsweep but mirrored around t = to. For the Te range we are interested in simulating,

the maximum slew rate for E limits to to values >∼ 5 ms.
Additionally, the space charge effects of the electron beam and trapped ions on the actual

electron energy in the trap need to be estimated and corrected for (a correction typically on

the order of 50-100 V). Lastly, the electron beam energy needs to be swept faster than the

time scale over which the collision processes of interest occur. This is necessary in order to

insure that the trapped ions see an actual MB EED (albeit a time-averaged one). Typical

sweep times are on the order of 5 ms.
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D. Representative sweep patterns

Figure 1 shows the sweeping pattern used to simulate an MB plasma of kBTe = 2.4 keV.

Operating conditions were used with Emin = 0.6 keV, Emax = 12.24 keV, (Va)min = 1.2 kV,

and to = 5 ms. The sweep patterns rises smoothly up from Emin to Emax and smoothly back

down to Emin. We avoid jumping from Emax immediately back down to Emin because of the

limited slew rates for E and Va described above. Figure 2 shows the derivatives of the slew

rates plotted in Fig. 1. Emax has been chosen to keep dE/dt < 30 V µs−1.

III. FIDELITY OF THE MB SIMULATIONS

To verify the accuracy of our simulated MB EEDs, we have carried out measurements of

line emission due to dielectric recombination (DR) and electron impact excitation (EIE) of

heliumlike neon, magnesium, and argon. Heliumlike ions are commonly used to measure the

electron temperature of a plasma by taking the ratio of DR produced lines to EIE lines [6].

Figure 3 shows pictorially how we were able to test the fidelity of the simulated MB EED.

The ratio of line emission due to the DR resonance line known as j relative to the electron

impact excitation line known as w can be used as a temperature diagnostic. Here we use

the notation of Ref. [7]. The j line samples the EED at a single energy while w integrates

the EED from the EIE threshold and up. As the temperature changes, so do the portions

of the MB EED sampled. Thus, as the temperature of the plasma changes, the j/w ratio

correspondingly changes [6].

A representative scatter plot of MB data take on EBIT-II is shown in Fig. 4 for Mg10+

at a simulated temperature of kBTe = 0.7 keV. Extracting the integrated line intensities for

j and w for a number of different simulated temperatures yields data such as that shown

in Fig. 5. We can then turn around and use the experimental and theoretical data shown

in Fig. 5 to infer the MB temperature based on the measured j/w ratio and the range of

theoretical predictions for this ratio. Figure 6 shows the resulting spectroscopically inferred

temperature versus the simulated temperature at which the data were collected. Lastly,

Fig. 7 replots these data to further emphasize the excellent EED fidelity we are able to

achieve in our EBIT MB simulations.
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IV. COLLISIONAL IONIZATION EQUILIBRIUM (CIE) CALCULATIONS

CIE occurs in plasma which are optically thin to radiation, of low enough density that

three-body recombination is unimportant, dust-free so recombination on grains is not an

issue, and in steady state or nearly so. Under these conditions the electron impact ionization

(EII) rate equals the electron-ion recombination rate. Hence the accuracy of these rates

determines reliability of the fraction ionic abundances calculated by a CIE model.

In astrophysics, plasmas in CIE are found in the Sun and other stars, galaxies, and the

intercluster medium. An early set of CIE calculations for astrophysical modeling are those

of Shull and van Steenberg [8] who compiled published DR, radiative recombination (RR),

and EII data. These data were updated by Arnaud and Rothenflug [9] and then again

by Arnaud and Raymond [10] specifically for iron. Subsequently Mazzotta et al. [11] re-

evaluated and updated the recombination data used in the models. Most recently we have

updated the recombination data using state-of-the-art theoretical DR and RR results for all

K-shell, L-shell, and Na-like ions of H through Zn [3]. Our results are discussed in more

detail below.

V. CIE MEASUREMENTS USING EBIT MB SIMULATIONS

EBIT MB simulations can be used to make studies of the ionic abundances, and thus

of CIE, as a function of electron temperature. Such measurements have been carried out

recently at Livermore to measure the charge state distribution of highly charged gold under

CIE conditions [12, 13]. A detailed review of these measurements is given by May et al. in

these proceedings.

An important aspect of using an EBIT MB simulation to study CIE is to account for

the effect of charge exchange (CX) on the ionic abundances. CX involves collisions between

ions and neutrals where an electron is captured by the ion from the neutral.

Although the ions in EBIT are trapped by the space charge of the electron beam, the

ions leave the immediate confines of the electron beam and can spend a rather large fraction

of the time outside the beam. In fact, this ion-beam overlap has been inferred in several

ways and may vary between a few percent to near unity [14, 15]. While outside the beam,

the ions are subject to interacting with rest gas neutrals and thus to CX. In that case the
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recombination rate may be much larger than that due to the DR and RR rates assumed in

CIE. An EBIT MB simulation can thus only be used to reliably study ionic abundances in

CIE, if contributions from CX are either minimize and suppressed or accurately known.

In order to test for the effect of CX on the charge state distribution of gold measured with

an MB simulation, measurements were made with different concentrations of background

gas. In particular, we varied the amount of argon gas injected into the trap using a gas

injector with a precisely controlled continuous flow. The absolute value of the neutral gas

density n0 in the trap is unknown. Also, the actual temperature of the ions and thus their

velocity vi is typically unknown, unless special efforts are made to measure it by very high-

resolution crystal spectroscopy [16, 17]. However, a way to measure the product of these two

parameters has been devised based on operating an EBIT in the so-called magnetic mode

[18], which can be used to detect and account for the presence of CX on the CIE.

In the magnetic mode, the x-ray signal induced by the CX decays exponentially as the

ions recombine [18]. The exponential decay constant is given by

RCX = n0viσCX (7)

where σCX is the CX cross section of neutral argon with highly charged gold ions. The

neutral gas velocity is assumed negligible compared to the velocity of the trapped ions.

Fitting the exponential decay of the x-ray signal during the magnetic mode yields RCX . We

then plot the average ionic charge state inferred during the MB simulation, i.e., when the

electron beam is on, as a function of RCX . The result is shown in Fig. 8. By interpolating the

measurements to a value of RCX = 0, the MB simulations yield the average ionic abundance

in CIE.

For the particular measurement of gold at a simulated temperature of 2.5 keV shown

in Fig. 8, the average ionic charge state did not depend on CX. This result is, however,

atypical and may be due to the dominance of dielectronic recombination in this case. In

typical situations, the CX recombination rate exceeds that due to RR by factors of five [19].

VI. NEW THEORETICAL CIE RESULTS

In the past 4 years there have been significant theoretical advances in the DR and RR

data available for modeling cosmic plasmas (as discussed in Ref. [3]). Modern DR and RR
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calculations have now been carried out by several different groups for K-shell, L-shell, and

Na-like ions of all elements from hydrogen up to and including zinc. For a given ion of a

given element, these theoretical calculations typically agree with one another to within 25%

at the temperatures where that ion forms in CIE. This formation zone is defined here as

the temperature range where the fractional ionic abundance is ≥ 1% of the total elemental

abundance.

Laboratory measurements have been used to benchmark modern DR calculations. K-

shell ions have been well studied using EBITs and ion storage rings. The agreement between

theory and experiment is generally within ∼ 20% [20, 21]. L-shell ions are less well studied
and the agreement between theory and experiment is ∼ 35% [3, 22, 23]. But as discussed

below, additional studies are needed. Additionally, DR theory is much less reliable at

∼ 104 K (kBTe ∼ 1 eV). This is because for the DR resonances important in 104 K plasmas,

the uncertainties in the theoretical resonance energies can be comparable to the resonance

energy. This results in a large uncertainty in the calculated DR rate coefficient. Barring

theoretical advances in this area, laboratory measurements remain the only reliable way to

produce the DR data needed for ions forming at these temperatures.

We have incorporated these new DR and RR rate coefficients into our CIE models [3].

Our results differ significantly from the CIE results of Mazzotta et al. [11] which were

the previous state-of-the-art for CIE calculations in astrophysics. We find peak fractional

abundances which differ by up to 60%. At fractional abundances of 0.1, we find differences

of up to a factor of 5. At 0.01, this can increase up to a factor of 11. The peak formation

temperature for an ion can shift by up to 20%. Ions with particularly large differences

include Mg, Al, Ca, Fe, Co, and Ni.

Figure 9 shows a comparison between our calculated CIE fractional abundances for iron

and those of Mazzotta et al. Here we have used recently published AUTOSTRUCTURE

calculations for DR [24] and RR [25]. Note that no significant differences between our results

and those of Mazzotta et al. are seen for charge states much lower than sodiumlike. This is

because the DR and RR data have been updated only for sodiumlike ions and more highly

ionized charge states.

We have also carried out CIE calculations using the FAC DR and RR data of Ref. [26–28].

These results are in good agreement the the AUTOSTRUCTURE-based CIE results. We

find that the peak fractional abundance differs by ≤ 10%. At 0.1 fractional abundances,
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differences are ≤ 30%, and at 0.01 they are ≤ 50%. This good agreement reflects the

good agreement between the AUTOSTRUCTURE and FAC DR and RR data. Figure 10

shows a comparison between the AUTOSTRUCTURE-based and FAC-based CIE fractional

abundances for iron.

VII. FUTURE MODELING NEEDS FOR MB PLASMAS IN CIE

A significant amount of recombination and ionization data are needed to improve CIE

models for astrophysics. We discuss these needs in detail in Ref. [3]. Our comments here

refer to ions of elements from hydrogen up to and including zinc.

For RR, theoretical and experimental data are needed for M-shell ions of elements up to

and including zinc. For DR of L-shell ions, laboratory measurements are needed for boron-

like, carbonlike, nitrogenlike, oxygenlike, fluorinelike, and neonlike ions. Modern theoretical

calculations exist for these isoelectronic sequences but there is a paucity of laboratory stud-

ies to benchmark the theory. Additionally, as discussed above, the reliability of DR theory

at temperatures of ∼ 104 K is poor and laboratory data are needed for ions forming at these

temperatures. More accurate atomic structure codes could remove much of the uncertainties

in the DR theory. More importantly is the lack of DR for ions with partially filled M-shells.

Initial theoretical and experimental work has been carried out for M-shell iron ions [29–31],

but significant work remains.

The EII data base used in astrophysics has essentially remained unchanged for almost 20

years. An excellent review of the status of the EII data base is given in Ref. [32]. In that

review, the authors found factor of 2−3 difference between various recommended published
EII data sets (e.g., [9, 33]). This is rather surprising as the published data sets all make use

of the same few theoretical and experimental results.

An updating of the EII database is sorely needed. Much of the existing data are based

on experiments with unknown metastable fractions. The recommended EII data used in

astrophysics has not been updated since around 1990. This is partly because few new

laboratory measurements or theoretical calculations exist.

CX is both a recombination and an ionization process and is most important for near-

neutral systems (charge ≤ 4) [9]. In astrophysics CX with H is important at temperatures

<∼ 25, 000 K [3]. CX in CIE has been investigated in Ref. [9]. These data need to be updated
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to reflect recent advances and incorporated into CIE models.

It is clear that vast quantities of data are still needed for reliable CIE models for as-

trophysics. We propose that these data should be generated with an accuracy of 35% or

better. This is the level of accuracy for the recent state-of-the-art DR and RR calculations

and measurements. It would be good if the remaining needed recombination and ionization

data were at the same level of accuracy. Additionally, EBIT MB simulations would be quite

helpful in testing the current generation of CIE models.
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FIG. 1: Digitized timing pattern of the electron beam energy (top) and of the electron gun anode

voltage (bottom) used for simulating a Maxwellian plasma at kBTe = 2.4 keV. Representative

operating conditions of Emin = 0.6 keV, Emax = 12.24 keV, (Va)min = 1.2 kV, and to = 5 ms have

been used.
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FIG. 2: Derivatives of the timing patterns shown in Fig. 1
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FIG. 3: The dashed curve shows a Maxwell-Boltzmann electron energy distribution for kBTe =

2.4 keV. The solid curve shows the electron energy which is swept out in the simulation generated

using the pattern shown in Fig. 1. The vertical dotted line shows the electrons contributing to the

resonance line labeled as j which is due to DR onto heliumlike ions. The filled area under the curve

shows the electrons contributing to EIE of w which is the resonance line of heliumlike ions. The

ratio of line emission due to j and w is temperature sensitive. See text and Ref. [2] for additional

details.
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FIG. 4: Scatter plot of photon wavelength versus electron beam energy for an MB simulation of

kBTe = 0.7 keV. The vertical features above E ∼ 1.35 keV are due to EIE of Mg10+ and are (using

the notation of Ref. [7]) w, x and y which are blended, and z. The features at E ∼ 0.98 keV are

due to DR into the n = 2 level of Mg9+. The features at E ∼ 1.2 keV are DR into the n = 3 level.

The tail on w below the EIE threshold energy is due to n ≥ 4 DR.
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FIG. 5: Measures and theoretical j/w line ratio versus kBTe for magnesium. Experimental results

are shown with their estimated 1σ confidence limits. The solid curve is the best-guess theoretical

line ratio. The dotted curves show the estimated range of the theoretical ratios. These dotted curves

represent not 1σ values but rather the maximum and minimum values based on the theoretical

results in the literature.
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FIG. 6: Spectroscopically inferred kBTe (using j/w) plotted as a function of the simulated MB

temperature. Data are shown for neon (circles), magnesium (triangles), and argon (circles). The

error bars represent the combined effects of the 1σ experimental uncertainties and the range of

theoretical j/w ratios. The straight line shows where the inferred and simulated temperatures are

equal.
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FIG. 7: Fidelity of our simulated MB plasmas using the results from Fig. 6. The ratio is shown

for the difference between the simulated and interred temperatures relative to the simulated value.

The symbols have the same meaning as in Fig. 6
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FIG. 8: Average ionic charge of gold for an MB simulation of a 2.5 keV plasma versus the CX rate,

RCX .
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FIG. 9: AUTOSTRUCTURE-based CIE results for iron. The solid curves of the upper graph

show the ionization fractional abundance as calculated using the AUTOSTRUCTURE DR rate

coefficients of Ref. [24] for hydrogenlike through sodiumlike ions and the AUTOSTRUCTURE

RR rate coefficients of Ref. [25] for bare through sodiumlike ions. We use the DR and RR rate

coefficients of Mazzotta et al. [11] for ions not calculated in Refs. [24] and [25]. The EII rate

coefficients used are those of Ref. [11]. The dashed curves show the abundances calculated by

Mazzotta et al. [11]. The lower graph shows the ratio of the calculated abundances. The lowest

ionization stage shown is P-like. Comparison is made only for fractional abundances greater than

10−2. We label the AUTOSTRUCTURE-based results as “AUTO” and those of Mazzotta et al.

as “Mazz”.
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FIG. 10: Comparison with the FAC-based CIE results for iron. The solid curves of the upper

graph show the ionization fractional abundance as calculated using the AUTOSTRUCTURE DR

rate coefficients of Ref. [24] for hydrogenlike through sodiumlike ions and the AUTOSTRUCTURE

RR rate coefficients of Ref. [25] for bare through sodiumlike ions. The dashed curves show the

abundances as calculated using the FAC DR rate coefficients of Refs. [26] and [27] for hydrogenlike

through sodiumlike ions and the FAC RR rate coefficients of Ref. [28] for bare through fluorinelike

ions. We use the DR and RR rate coefficients of Ref. [11] for ions not calculated in Refs. [24–

28]. The EII rate coefficients used are those of Ref. [11]. The lower graph shows the ratio of the

calculated abundances. The lowest ionization stage shown is P-like. Comparison is made only

for fractional abundances greater than 10−2. We label the AUTOSTRUCTURE-based results as

“AUTO” and the FAC-based results as “FAC”.
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